| Reg. No. : | | 4 | | | | | | | | ESP | () | |------------|--|---|--|--|--|--|--|--|--|-----|-----| |------------|--|---|--|--|--|--|--|--|--|-----|-----| ## Question Paper Code: 41399 ## B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018 Fifth/Seventh Semester Mechanical Engineering ME 6501 – COMPUTER AIDED DESIGN (Common to Mechanical Engineering (Sandwich)/Manufacturing Engineering/ Mechatronics Engineering) (Regulations 2013) Time: Three Hours Maximum: 100 Marks Answer ALL questions. PART - A $(10\times2=20 \text{ Marks})$ - 1. What are the advantages of concurrent engineering? - 2. What is meant by concatenation transformation? - 3. List out the various Bezier curves based on control points. - 4. What is the use of surface patch? - 5. What is the need of visualization? - 6. Mention the two approaches to hidden surface removal. - 7. List out techniques of assembly modeling. - 8. Define tolerance stack-up. - 9. List out the international organizations involved to develop the graphics standards. - 10. What is the objective of GKS-3D standard? PART - B $(5\times13=65 \text{ Marks})$ 11. a) Explain the various graphic transformations required for manipulating the geometric information. (OR) b) Describe and demonstrate DDA line drawing algorithm. (13) (13) | 4139 | 9 | -2- | | | |--------|--|---------------------|--------------------------|--| | 12. a) | Briefly discuss about the (OR) | ne Bezier surface a | and composite surface. | (13) | | b) | Discuss the most comm | only used solid en | tities with help of neat | sketch. (13) | | 13. a) | Explain the area orient (OR) | ted algorithm for h | nidden line removal. | (13) | | b) | Explain the techniques | of Phong shading | and Gouraud shading | g. (13) | | 14. a) | Explain the following m | ating conditions r | equire to assembling to | wo parts. (13) | | | i) Coincident and condii) Parallel and tangen | | | | | | (OR) | | | | | b) | Describe the various ma | ass properties on (| CAD/CAM systems. | (13) | | 15. a) | List and discuss the maj | or available modu | les in CAD software pa | ackages. (13) | | b) | i) Explain IGES File S | tructure with exa | mples. | (7) | | | ii) Explain the concept. | of Product Data H | exchange using STEP | A STATE OF THE PARTY PAR | PART - C 16. a) Sketch the CSG tree for each of the two solids shown below. a) Solid S_1 b) Solid S_2 $(1\times15=15 \text{ Marks})$ The solid S_2 is divided symmetrically and it consist of four blocks $(B_1 \text{ to } B_4)$ and six cylinder $(C_1 \text{ to } C_6)$. The dashed line shown inside S_2 in the figure (b) is not part of S_2 . It is a hypothetical line that uses to divide the top part of S_2 into two blocks, B_1 and B_2 . (15) (OR) b) A cubic Bezier curve is defined by coordinates $P0 = [2 \ 2 \ 0]^T$, $P1 = [2 \ 3 \ 0]^T$, $P2 = [3 \ 3 \ 0]^T$ and $P3 = [3 \ 2 \ 0]^T$. Find the equation of the resulting Bezier curve. Also find the points on the curve for u = 0, 0.25, 0.5, 0.75 and 1. (15) NAME OF TAXABLE PARTY O The saint S_{ij} is discided symmetrically and it consists of four blocks $(B_{ij}$ to $B_{ij})$ and an excluder $(C_{ij}$ to $C_{ij})$. The doubted line above these consists S_{ij} in the figure that not part of S_{ij} . It is a hypotic Starl line that now in discist the top part of S_{ij} into two blocks. If, and B_{ij} . do 15 A color Boson curve is defined by coordinates P0 = [2 2 0]?, P1 = [2 5 0]?. P2 = [3 4 0] **mo P4 = 15 2 0]? Find the equation of the resulting Boson curve. Max find the points on the curve form =0, 0.25, 0.5, 0.75 and 1.